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Morita Contexts and their Lattices of Relations

Jan Paseka1

We study the interaction between the lattices of relations of members of a general
Morita context. The pairs of reversing-order maps are defined, which determine the
dualities between the lattices of ‘closed’ relations. Under rather weak conditions, these
dualities can be composed obtaining the projectivities defined by simple maps.
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1. INTRODUCTION AND PRELIMINARIES

The notion of Morita equivalence is fundamental in both Algebra and Analy-
sis. The machinery of Morita equivalence is in terms of projective modules, tensor
products, and Hom functors. Bass (1962) developed the notion of a Morita context,
which facilitates the application of the theory.

Morita equivalence was adapted to C∗-algebras by Rieffel in the 1970s
(Rieffel, 1974) and has since become a standard tool for analyzing group C∗-
algebras and crossed products. Our treatment of lattices of ‘closed’ relations
of a general Morita context reflects our emphasis on Morita equivalence. We
originally intended to phrase all our results and calculation in terms of Morita
equivalence for quantales as in Paseka (2002). However, as we progressed, we
found that it is more convenient to compute in the setting of semigroups that gen-
eralizes the viewpoints of the ring theory, the C∗-algebra theory and the theory of
quantales.

In this paper, we present an interaction between the lattices of rela-
tions of members of a general Morita context. The presented results were in-
spired by a similar situation for Morita contexts between rings (see Kashu,
1998).

The paper is organized as follows: Section 1 provides a brief introduction
to the notion of general Morita context and defines the investigated dualities and
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projectivities. Section 2 is devoted to show how the dualities and projectivities are
related. Section 3 shortly translates the results of Section 2 into the setting of the
lattice of all subacts (submodules as in Kashu (1998)).

For a general overview of the Morita equivalence theory over semigroups we
refer, for example to Talwar (1996), for facts concerning quantales and quantale
modules, in general we refer to Rosenthal (1990).

Let R and S be semigroups, P an R, S-biact, Q an S,R-biact such that there
are biact maps (−,−) : P × Q −→ R and [−,−] : Q × P −→ S such that (x ·
s, y) = (x, s · y), [y · r, x] = [y, r · x] (that is, these maps are balanced), (x1, y) ·
x2 = x1 · [y, x2], [y1, x] · y2 = y1 · (x, y2) for each x, x1, x2 ∈ P , y, y1, y2 ∈ Q,
s ∈ S, r ∈ R.

The 6-tuple (R, S, P,Q, (−,−), [−,−]) is called a general Morita context
and the pair (P,Q) a general Morita pair.

A general Morita context (R, S, P,Q, (−,−), [−,−]) is said to be a gen-
eral quantale Morita context if R, S are quantales, P is an R, S-bimodule, Q

is an S,R-bimodule and (−,−) and [−,−] preserve arbitrary joins in each
variable.

Let h : A × B → C be an arbitrary map, A,B,C sets. There exists a
unique map h : P(A × A) × P(B × B) → P(C × C) which is sup-preserving in
each variable and which satisfies h({(a1, a2)}, {(b1, b2)}) = {(h(a1, b1), h(a2, b2)})
for all a1, a2 ∈ A and all b1, b2 ∈ B. This map is called the relational
extension of h.

Moreover, since the actions h(−, Y ) : P(A × A) → P(C × C) and
h(X,−) : P(B × B) → P(C × C) are sup-preserving for all X ⊆ A × A and all

Y ⊆ B × B, they have adjoints denoted Y
h−→l− and X

h−→r−, respectively. Note

that, for all Z ⊆ C × C, h(X, Y ) ⊆ Z iff X ⊆ Y
h−→lZ iff Y ⊆ X

h−→rZ.

Proposition 1. Let (R, S, P,Q, (−,−), [−,−]) be a general Morita context.
Then, (P(R × R),P(S × S),P(P × P ),P(Q × Q), (−,−), [−,−]) is a gen-
eral quantale Morita context; here P(R × R),P(S × S) are quantales with
respect to the induced operations ·R , ·S and arbitrary unions, P(P × P )
is an P(R × R),P(S × S)-bimodule with respect to the induced left and
right actions and arbitrary unions, P(Q × Q) is an P(S × S), P(R × R)-
bimodule with respect to the induced left and right actions and arbitrary
unions.

Proof: It is evident since R × R and S × S are semigroups, P × P an R ×
R, S × S-biact, Q × Q an S × S,R × R-biact, P(R × R) is a free quantale over
R × R, P(S × S) is a free quantale over S × S, P(P × P ) is a free P(R ×
R),P(S × S) quantale bimodule over P × P and P(Q × Q) is a free P(S ×
S),P(R × R) quantale bimodule over Q × Q. �
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For an arbitrary general Morita context (R, S, P,Q, (−,−), [−,−]) we con-
sider the following pairs of maps between the lattices of relations:

αP (σ ) = idP
·P−→rσ, βP (ψ) = idQ

[−,−]−→rψ,

αQ(τ ) = idQ

·Q−→lτ, βQ(ψ) = idQ
[−,−]−→lψ,

γP (σ ) = [idQ, σ ], δP (ψ) = idP ·P ψ,

γQ(τ ) = (τ, idP ), δQ(ψ) = ψ ·Q idQ,

rS(ψ) = ψ
·S−→r idS, lS(ψ) = ψ

·S−→l idS,

rP (σ ) = σ
(−,−)−→r idS, lP (τ ) = τ

(−,−)−→l idS,

GP (σ ) = σ
·P−→r idP , HP (ψ) = ψ

·P−→l idP ,

GQ(τ ) = τ
·Q−→l idQ, HQ(ψ) = ψ

·Q−→r idQ;

here ψ ∈ P(S × S), σ ∈ P(P × P ), τ ∈ P(Q × Q);

Lemma 2. The pairs of maps (rS, lS), (rP , lP ), (GP ,HP ), (GQ,HQ) form Galois
connections.

Proof: Let ψ,ψ1, ψ2 ∈ P(S × S), σ ∈ P(P × P ), τ ∈ P(Q × Q). We have
ψ2 ⊆ rS(ψ1) iff ψ2 ⊆ ψ1

·S−→r idS iff ψ1·Sψ2 ⊆ idS iff ψ1 ⊆ ψ2
·S−→l idS iff ψ1 ⊆

lS(ψ2). Similarly, τ ⊆ rP (σ ) iff τ ⊆ σ
[−,−]−→r idS iff (σ, τ ) ⊆ idS iff σ ⊆ τ

[−,−]−→l idS

iff σ ⊆ lP (τ ). Moreover, σ ⊆ HP (ψ) iff σ ⊆ ψ
·P−→l idP iff σ ·P ψ ⊆ idP iff

ψ ⊆ σ
·P−→r idP iff ψ ⊆ GP (σ ). �

Note that the Lemma 2 implies that we have ψ ⊆ rS(lS(ψ)), ψ ⊆
lS(rS(ψ)), τ ⊆ rP (lP (τ )), σ ⊆ lP (rP (σ )), σ ⊆ HP (GP (σ )), ψ ⊆ GP (HP (ψ)),
τ ⊆ HQ(GQ(τ )) and ψ ⊆ GQ(HQ(ψ)) for all ψ ∈ P(S × S), σ ∈ P(P × P ),
τ ∈ P(Q × Q).
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For any map f : A → B, we shall denote Imf the set {y : y = f (x), x ∈ A}.
Then Im(rS) = {ψ ∈ P(S × S) : ψ = rS(lS(ψ))}, Im(lS) = {ψ ∈ P(S × S) :
ψ = lS(rS(ψ))}, Im(rP ) = {τ ∈ P(Q × Q) : τ = rP (lP (τ ))}, Im(lP ) = {σ ∈
P(P × P ) : σ = lP (rP (σ ))}, Im(HP ) = {σ ∈ P(P × P ) : σ = HP (GP (σ ))},
Im(GP ) = {ψ ∈ P(S × S) : ψ = GP (HP (ψ))}, Im(HQ) = {τ ∈ P(Q × Q) :
σ = HQ(GQ(τ ))} and Im(GQ) = {ψ ∈ P(S × S) : ψ = GQ(HQ(ψ))} are
closure systems and we obtain the following dualities between them:

P(S × S) ⊇ Im(lS)
rS→←
lS

Im(rS) ⊆ P(S × S) (D1),

P(P × P ) ⊇ Im(lP )
rP→←
lP

Im(rP ) ⊆ P(Q × Q) (D2),

P(P × P ) ⊇ Im(HP )
GP→←
HP

Im(GP ) ⊆ P(S × S) (D3),

P(Q × Q) ⊇ Im(HQ)
GQ→←
HQ

Im(GQ) ⊆ P(S × S) (D4).

Recall that the right S-act P is faithful for S (left R-act P is faithful for R) whenever
p · s1 = p · s2 for all p ∈ P implies s1 = s2 (r1 · p = r2 · p for all p ∈ P implies
r1 = r2). The preceding condition is clearly equivalent to the condition

(A) idP ·P ψ ⊆ idP =⇒ ψ ⊆ idS [ (A′) µ·P idP ⊆ idP =⇒ µ ⊆ idR ]

for all ψ ∈ P(S × S) (µ ∈ P(R × R)). In particular, the left S-act Q is faith-
ful for S (right R-act Q is faithful for R) whenever the following condition is
satisfied:

(C) ψ ·QidQ ⊆ idQ =⇒ ψ ⊆ idS [ (C′) idQ·Qµ ⊆ idQ =⇒ µ ⊆ idR ]

for all ψ ∈ P(S × S) (µ ∈ P(R × R)).
Similarly, the S,R-biact Q is right faithful (left faithful) for the R, S-biact

P whenever [q, p1] = [q, p2] ((p1, q) = (p2, q)) for all q ∈ Q implies p1 = p2.
This condition is equivalent to the condition

(B) [idQ, σ ] ⊆ idS =⇒ σ ⊆ idP [ (B′) (σ, idQ) ⊆ idS =⇒ σ ⊆ idP ]

for all σ ∈ P(P × P ). In particular, the R, S-biact P is left faithful (right faithful)
for the S,R-biact Q whenever the following condition is satisfied:

(D) [τ, idP ] ⊆ idS =⇒ τ ⊆ idQ [ (D′) (idP , τ ) ⊆ idS =⇒ τ ⊆ idQ ]

for all τ ∈ P(Q × Q).
A general Morita context is said to be nondegenerate if the conditions (A),

(B), (A′), (B′), (C), (D), (C′) and (D′) are satisfied.
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2. THE COMPOSITION OF DUALITIES ON LATTICES OF RELATIONS

To compose the dualities (D1) and (D3), we need the equality Im(rS) =
Im(GP ). This can be obtained in the case when the maps rS and GP are expressed
by one another. Thus, we have the following lemma.

Lemma 3. Condition (A) implies the equality rS = GP ◦ δP . Condition (B) im-
plies the equality GP = rS ◦ γP . Both conditions (A) and (B) ensure the equality
Im(rS) = Im(GP ) and so the dualities (D1) and (D3) can be composed obtaining
the projectivity

P(P × P ) ⊇ Im(HP )
lS◦GP→←
HP ◦rS

Im(lS) ⊆ P(S × S) (P 1)

Proof: Let ψ, ϕ ∈ P(S × S). We have rS(ψ) ⊆ GP (δP (ψ)). Namely, ψ ·Sϕ ⊆
idS implies δP (ψ)·Sϕ = (idP ·P ψ)·Sϕ = idP ·P (ψ ·Sϕ) ⊆ idP ·P idS ⊆ idP . Hence,
putting ϕ = rS(ψ) , we get the required inclusion. Conversely, we have rS(ψ) ⊇
GP (δP (ψ)). This follows from the fact that ϕ ⊆ GP (δP (ψ)) is equivalent to
idP ·P ψ ·Sϕ ⊆ idP . Using the faithfulness of P we get ψ ·Sϕ ⊆ idS , hence ϕ ⊆
rS(ψ). In particular, Im(rS) ⊆ Im(GP ).

Similarly, let us check that GP = rS ◦ γP . Assume that ϕ ⊆ GP (σ ).
Then σ ·P ϕ ⊆ idP . Note that rS(γP (σ )) = rS([idQ, σ ]). Then, ϕ ⊆ rS(γP (σ )) iff
[idQ, σ ]·Sϕ ⊆ idS . We have [idQ, σ ]·Sϕ = [idQ, σ ·P ϕ] ⊆ [idQ, idP ] ⊆ idS . Con-
versely, let ϕ ⊆ rS(γP (σ )). Then [idQ, σ ·P ϕ] ⊆ idS . By the faithfulness of Q we
have that σ ·P ϕ ⊆ idP . Hence, ϕ ⊆ GP (σ ). In particular, Im(rS) ⊇ Im(GP ). �

Lemma 4. Condition (A) implies the equality lS = αP ◦ HP , therefore αP (σ ) =
(lS ◦ GP )(σ ) for every σ ∈ Im(HP ). Condition (B) implies the equality HP =
βP ◦ lS , therefore β(ψ) = (HP ◦ rS)(ψ) for every ψ ∈ Im(lS).

Proof: As in the previous lemma, ϕ ⊆ lS(ψ) iff ϕ·Sψ ⊆ IdS and ϕ ⊆
αP (HP (ψ)) iff IdP ·P ϕ ⊆ HP (ψ) iff IdP ·P ϕ·P ψ ⊆ IdP .

Assuming ϕ ⊆ lS(ψ), we get immediately that IdP ·P ϕ·P ψ ⊆ IdP . Con-
versely, let ϕ ⊆ lS(ψ). By the faithfulness of P we get that ϕ·Sψ ⊆ IdS . Hence,
ϕ ⊆ lS(ψ). Alltogether, lS = αP ◦ HP .

Similarly, let σ ⊆ HP (ψ) iff σ ·P ψ ⊆ IdP and σ ⊆ βP (lS(ψ)) iff [idQ, σ ] ⊆
lS(ψ) iff [idQ, σ ]·Sϕ ⊆ idS iff [idQ, σ ·P ϕ] ⊆ idS . Consequently, σ ⊆ HP (ψ) im-
plies that [idQ, σ ]·P ϕ ⊆ idS . Conversely, let σ ⊆ βP (lS(ψ)). Applying the faith-
fulness of Q we get that σ ·P ψ ⊆ IdP . Hence, σ ⊆ HP (ψ) and it follows that
HP = βP ◦ lS . The both considerations, in turn, imply (by the Galois connection
property) the remaining part of the lemma. �
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Theorem 5. If conditions (A) and (B) are satisfied then dualities (D1) and (D3)
can be composed and the resulting projectivity (P1) is determined by the maps αP

and βP :

In a similar vein we can prove the following (dual) statements:

Lemma 6. Condition (A′) implies the equality lP = HP ◦ γP . Condition (B′) im-
plies the equality HP = lP ◦ δQ. Both conditions (A′) and (B′) ensure the equality
Im(lP ) = Im(HP ), and so the dualities (D2) and (D3) can be composed obtaining
the projectivity

P(Q × Q) ⊇ Im(rP )
GP ◦lP→←
rP ◦HP

Im(GP ) ⊆ P(S × S) (P 2)

Lemma 7. Condition (A′) implies the equality rP = βQ ◦ GP , therefore
βQ(ψ) = (rP ◦ HP )(ψ) for every ψ ∈ Im(GP ). Condition (B′) implies the equality
GP = αQ ◦ rP , therefore αQ(τ ) = (GP ◦ lP )(τ ) for every τ ∈ Im(rP ).

Theorem 8. If conditions (A′) and (B′) are satisfied, then dualities (D2) and
(D3) can be composed and the resulting projectivity (P2) is determined by the
maps αQ and βQ:
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Lemma 9. Condition (C) implies the equality lS = GQ ◦ δQ. Condition (D)
implies the equality GQ = lS ◦ γP . Both conditions (C) and (D) ensure the equality
Im(lS) = Im(GQ) and so the dualities (D1) and (D4) can be composed obtaining
the projectivity

P(Q × Q) ⊇ Im(HQ)
rS◦GQ→←
HQ◦lS

Im(rS) ⊆ P(S × S) (P 4)

Lemma 10. Condition (C) implies the equality rS = αQ ◦ HQ, therefore
αQ(τ ) = (rS ◦ GQ)(τ ) for every τ ∈ Im(HQ). Condition (D) implies the equal-
ity HQ = βQ ◦ rS , therefore βQ(ψ) = (HQ ◦ lS)(ψ) for every ψ ∈ Im(rS).

Theorem 11. If conditions (C) and (D) are satisfied, then dualities (D1) and
(D4) can be composed and the resulting projectivity (P3) is determined by the
maps αQ and βQ:

Lemma 12. Condition (C′) implies the equality HQ = rP ◦ δP . Condition (D′)
implies the equality GQ = lS ◦ γP . Both conditions (C) and (D) ensure the equality
Im(rP ) = Im(HQ) and so the dualities (D2) and (D4) can be composed obtaining
the projectivity

P(P × P ) ⊇ Im(lP )
GQ◦rP→←
lP ◦HQ

Im(GQ) ⊆ P(S × S) (P 3)

Lemma 13. Condition (C′) implies the equality lP = βP ◦ GQ, therefore
βP (ψ) = (lP ◦ HQ)(ψ) for every ψ ∈ Im(GQ). Condition (D′) implies the equality
GQ = αP ◦ lP , therefore αP (σ ) = (GQ ◦ rP )(σ ) for every σ ∈ Im(lP ).

Theorem 14. If conditions (C′) and (D′) are satisfied, then dualities (D2) and
(D4) can be composed and the resulting projectivity (P4) is determined by the
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maps αP and βP :

Combining Theorems 5, 8, 11, and 14, the principal result of this note is

Theorem 15. If the context (R, S, P,Q, (−,−), [−,−]) is nondegenerate, then
we have the following situation:

where all maps are bijections: four compatible dualities (rS, lS), (GP ,HP ),
(rP , lP ), (GQ,HQ), and two projectivities (αP , βP ), (αQ, βQ) which are the com-
positions of respective dualities.

3. THE COMPOSITION OF DUALITIES FOR SUBACTS

We now proceed to look shortly at the case of subacts and factorsets. Recall
that each subset X (factorset Y ) of some S-act T corresponds to the identity sub-
relation idX of idT (to some equivalence overrelation of idT ). Similarly, a right
(left) subact X of some right (left) S-act T corresponds to the identity subre-
lation idX of idT such that idX·T idS ⊆ idX (idS ·T idX ⊆ idX). A corresponding
notion for factorsets is a right (left) congruence on idT . Analogous consider-
ations to the following one can be done for any suitable notion of a module
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over some “good” algebraic structure (rings, semirings, quantales, C∗-algebras
etc.).

We can then investigate the reversing-order maps between the complete lat-
tices of right subacts L(P S) and L(SS) and the complete lattices of left congruences
Con(SS) and Con(SQ).

Note that, for a nondegenerate context,

rS(L(SS)) ⊆ Con(SS), lS(Con(SS)) ⊆ L(SS),
rP (L(P S)) ⊆ Con(SQ), lP (Con(SQ)) ⊆ L(P S),
αP (L(P S)) ⊆ L(SS), βP (L(SS)) ⊆ L(P S),
γP (L(P S)) ⊆ L(SS), δP (L(SS)) ⊆ L(P S),
αQ(Con(SQ)) ⊆ Con(SS), βQ(Con(SS)) ⊆ Con(SQ),
γQ(Con(SQ)) ⊆ Con(SS), δQ(Con(SS)) ⊆ Con(SQ),
GP (L(P S)) ⊆ Con(SS), HP (Con(SS)) ⊆ L(P S),
GQ(Con(SQ)) ⊆ L(SS), HQ(L(SS)) ⊆ Con(SQ).

For any map µ between the lattices of all relations, we shall define a restric-
tion µs to the lattices of right subacts and a restriction µc to the lattices of left
congruences. Then the pairs of maps (rs

S, l
c
S), (rs

P , lcP ), (Gs
P ,Hc

P ), (Gc
Q,Hs

Q) form
Galois connections and all the statements from Section 2 can be translated to the
subacts-congruences setting.

In particular, the following theorem holds

Theorem 16. If the context (R, S, P,Q, (−,−), [−,−]) is nondegenerate then
we have the following situation:

where all maps are bijections: four compatible dualities (rs
S, l

c
S), (Gs

P ,Hc
P ),

(rs
P , lcP ), (Gc

Q,Hs
Q), and two projectivities (αs

P , βs
P ), (αc

Q, βc
Q) which are the com-

positions of respective dualities.
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